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a b s t r a c t 

The local dissimilarity has been verified as one of effective metrics for pattern classification. For high- 

dimensional data, because of the property of high-dimension, even if there are a number of available 

samples, they are still only resultant observations of a sampling process of the high-dimensional popula- 

tion. As a consequence, available samples at least partially possess the property of randomness and are 

not “accurate” representations of the true and total sample space. Besides the prevailing local dissimilarity 

measure, global dissimilarity measures might also be exploited for improving the classification approach. 

In this paper, we propose to directly exploit global and local dissimilarity measures to efficiently perform 

image classification. The proposed method proposes to simultaneously use three dissimilarities derived 

from the original and transform sample space. These dissimilarities including the elaborated distance ra- 

tio enable space relations of the probe sample and gallery samples to be measured from three viewpoints, 

so the combination of them provide us with more reliable measurements on spatial geometric relation- 

ship of samples. An obvious advantage of this combination is that we can attain a very robust evaluation 

on the space distance between samples and the consequent classification decision will be less affected 

by the noise in data. The experiments prove that the proposed method does achieve the desired goal, i.e., 

very satisfactory accuracy improvement in comparison with the previous state-of-the art methods. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Classification of images is not only one of the most important

computer vision problems but also an important means to make

our society intelligent [2,5,16,20] . To implement classification of

images, dissimilarity measures must be used. A reasonable idea is

that a probe sample can be viewed as a member of the class of

the gallery with which the probe sample has the lowest dissimi-

larity [4,9] . Nearest neighbor classification (NNC) is a well-known

specific implementation of this idea [3,27] . 

Extensive applications of NNC are mainly attributed to not only

its simplicity but also its following theoretical property. Under the

condition that there are infinite gallery samples, the rate of clas-

sification errors of NNC must be lower than twice of that of the

minimum-error Bayesian classification method (MEBCM) [7] . Be-

cause MEBCM is the optimal classifier with the fewest errors, NNC

of course is a popular method owing to its good theoretical per-

formance. However, in most real-world applications infinite sam-

ples even a large number of samples are unavailable. Especially,

for applications on image classification, it seems that in most cases

the number of the gallery samples are less than the dimensionality
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21] . In this sense, NNC usually cannot exert its ideal performance

wing to a limited number of gallery samples. 

The center distance seems to be a feasible means to denote

lobal dissimilarity of a probe sample and a class. When the center

istance is used for classification, the computational cost is very

ow. Moreover, it appears that the center distance based classifi-

ation method might be the fastest classification method, because

nly calculation of C distance values is needed for classifying a

robe sample ( C is the number of classes). If all classes are sep-

rated from each other, then it is undoubted that the centers of

ifferent classes are far from each other. As a result, the center

istance based classification method can produce a high accuracy.

owever, we must point out that in real world applications differ-

nt classes may have complex distributions. For example, distribu-

ions of some classes may not be subject to the normal distribu-

ion and even are multimodal [19] . Under these circumstances, the

enter distance based classification method usually cannot obtain

 satisfactory accuracy. 

In past studies, people pay a lot of attentions on choosing or

esigning suitable dissimilarity metrics to represent the distance.

or example, we see that metric learning is a popular topic [31,33] .

n recent years algorithm based dissimilarity metrics also receive

any concerns. The sparse representation based dissimilarity met-

ic is a typical example of algorithm based dissimilarity metrics

25,29] . In the corresponding method, sparse representation is first

https://doi.org/10.1016/j.patrec.2019.10.026
http://www.ScienceDirect.com
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mplemented, then the solution of the sparse representation is ex-

loited to calculate dissimilarities of the probe sample with ev-

ry class. Besides the original sparse representation method, the l 2 
orm regularization based sparse representation methods includ-

ng collaborative representation also use the same or similar dis-

imilarity metric [6,14,26,28,30] . However, people almost ignore a

act that different dissimilarity metrics all contain useful informa-

ion on representations of space relations of samples. As a result,

n this paper, we propose to simply combine three different dis-

imilarity metrics for efficient image classification. 

As we know, most of methods extract features from original

amples before pattern classification [32] . The main goal of fea-

ure extraction is to attain features beneficial to classification. For

xample, subspace learning methods including linear discriminant

nalysis and principal component analysis are widely used feature

xtraction methods [10,12,18,24] . Subspace learning also has the

oal to reduce the dimension of the raw data. As a kind of typi-

al feature transform method, subspace learning converts raw data

nto a new space [13] . Besides feature transform, feature selection

s also widely used [22] . Feature selection can perform well un-

er the condition that some components of the original features

re better in representing discriminative information of patterns

han the other components [23] . However, with this paper, we find

hat in the original sample space, if we choose proper dissimilarity

etrics, we can still attain very good classification result. There-

ore, we propose an image classification method without feature

xtraction. In particular, though our proposed method copes with

he classification problem of images by virtue of only the raw data,

t can attain very high classification accuracies. In this sense, for

mage classification, conventional feature extraction may be not a

ecessary procedure. This can be partially attributed to the fact

hat all information obtained using feature extraction methods in-

eed exists in the raw data. 

Our method also has the following implications. Different dis-

imilarity metrics have different physical meaning. Moreover, their

erformance vary with the applications. Differing from metric

earning methods, our method demonstrates that combination of

ultiple dissimilarity metrics is very useful for classification of im-

ges. Additionally, our findings also show that if the combined dis-

imilarity metrics have enough difference, the result will be good. 

. The proposed method 

The basic idea of the proposed method is that both global and

ocal dissimilarity measures of data are useful for representations

f space relations of samples so combination of them can improve

he classification performance. 

Suppose that all images are gray images. The proposed method

as the following main calculations. First, all gallery samples and

robe samples are transformed into column vectors. So we also call

ach of them a sample vector. In particular, as each naïve sample is

n image, we first concatenate all columns of an image to generate

 column vector. Then the Euclidean distance between each origi-

al probe sample and original gallery sample is calculated. The Eu-

lidean distance between probe sample t and the j th gallery sam-

le of the i th class is denoted by e 
j 
i 
. Then all gallery samples and

robe samples are normalized as unit vectors of length 1. In other

ords, sample vector g is normalized by h = 

g 
|| g|| . The resultant h

s called transform sample. Hereafter we call the sample before the

ormalization procedure original sample. The space corresponding

o the original samples and transform samples are referred to as

riginal sample space and transform sample space respectively. The

enter of all transform samples of a class is obtained using 

p i = 

1 

n 

n ∑ 

j=1 

s j 
i 

(1) 
p i denotes the center of the i th class. s 
j 
i 

stands for the j th

allery sample of the i th class. n is the number of the gallery sam-

les of the i th class. The center distance between probe sample t

nd the i th class is defined as 

 i = 

√ 

M ∑ 

k =1 

( p ik − t k ) 
2 (2) 

p ik is the k th entry of p i . t k is the k th entry of t. M is the di-

ension of the sample. The block distance between probe sample

 and the j th gallery sample of the i th class is denoted by f 
j 
i 

and

efined as 

f j 
i 
= 

M ∑ 

k =1 

| s j 
ik 

− t k | (3) 

s 
j 

ik 
is the k th entry of s 

j 
i 
. Based on the basic calculations pre-

ented above, we offer all steps on probe sample t of the proposed

ethod as follows. 

Step 1. The Euclidean distance between original probe sample t

nd the original j th gallery sample of the i th class is obtained and

enoted by e 
j 
i 
. We define e min 

i 
= min 

j=1 ···n 
e 

j 
i 

as Euclidean distance be-

ween original probe sample t and the i th class. e min 
i 

is also called

he nearest distance of the probe sample to the i th class in the

riginal sample space. For original probe sample t , the ratio of the

uclidean distance of the i th class to the sum of the Euclidean dis-

ances of all other classes is attained using e i 
ratio 

= 

e min 
i ∑ C 

j=1 e 
min 
j 

−e min 
i 

. C

s still the number of the classes. e i 
ratio 

is called original distance

atio of the probe sample with respect to the i th class. 

Step 2. In the transform sample space, the center distance be-

ween probe sample t and the i th class is attained using Eq. (2) and

enoted by c i . 

Step 3. In the transform sample space, the block distance be-

ween probe sample t and the j -th gallery sample of the i th class

s obtained using Eq. (3) and denoted by f 
j 
i 
. Let f 

min 
i = min 

j=1 ···n 
f 

j 
i 

tand for the block distance between probe sample t and the i th

lass. f 
min 
i is also called the nearest block distance of the probe

ample to the i th class in the transform sample space. 

Step 4. The obtained dissimilarity values are normalized by

 

i 
ratio 

= 

e i 
ratio 

max ( e i 
ratio 

) 
, c i = 

c i 
max ( c i ) 

and f 
min 
i = 

f min 
i 

max ( f min 
i ) 

, respectively. The re-

ultant e i 
ratio 

, c i and f 
min 
i are called normalized distance ratio, nor-

alized center distance and normalized block distance, respec-

ively. The ultimate dissimilarity between probe sample t and the

 th class is attained using u i = r 1 × e i 
ratio 

+ r 2 × c i + r 3 × f 
min 
i . u i is

alled fusion distance. r 1 , r 2 and r 3 are the weight coefficients to

ombine three distances e i 
ratio 

, c i and f 
min 
i . 

Step 5. Let q = argmin 

i 

u i . Then we think that probe sample t

elongs to the q -th class and denote the classification decision by

 abel (t) = q . 

Fig. 1 summarizes the pipeline of the proposed method. It

learly presents that one dissimilarity metric is derived from the

riginal sample space and two dissimilarity metrics are generated

rom the transform sample space. 

. Analysis of our proposed method 

With this section, we present the characteristics and rationale

f the proposed method. The first characteristic of the proposed

ethod is that it evaluates dissimilarities between probe samples

nd gallery samples in both the original sample space and trans-

orm sample space. The transform sample space is very easy to

btain from the original sample space, and it converts the compo-

ents of the original sample vector into a fixed range by the nor-
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Fig. 1. The pipeline of the proposed method. 
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malization. Moreover, the transform sample derived from the orig-

inal sample can weaken the effect, on the image, of illuminations.

As we know, for visible light images, strong illuminations usually

produce images with high gray values but weak illuminations will

generate low gray values. As a result, for the same object, the ap-

pearance will vary with illuminations. The normalization process

to produce the transform sample can effectively resist this influ-

ence and can partially weaken the original sample difference of

the same object caused by various illuminations, which is benefi-

cial to correct classification of images. On the other hand, because

the original sample and transform sample are both reasonable rep-

resentations of the image, to simultaneously exploit them for pat-

tern classification is a feasible and proper way. 

The second characteristic of the proposed method is that it si-

multaneously uses global and local dissimilarity measures of sam-

ples for classification. Moreover, the exploited three dissimilarity

measures have enough difference. In particular, the center distance

aims to evaluate global dissimilarity. It can be viewed as an aver-

age distance of the probe sample to a class. On contrary, the block

distance and distance ratio are evaluations of local dissimilarity.

The distance ratio is a special dissimilarity designed by us. It is

calculated in the original sample space. It is not a conventional dis-

tance but a ratio, of the nearest distance of the probe sample to a

class, to the sum of the nearest distances of the same probe sample

to all other classes. The smaller this ratio is, the larger the proba-

bility of the probe sample being from the corresponding class is. In

this sense, the distance ratio has the same meaning as a conven-

tional distance. Thus, in our method it is reasonable to integrate

the distance ratio with the other two distances for classification. 

As a widely used local dissimilarity, the nearest distance pro-

vides an effective means to represent local space relationship be-

tween the probe sample and training samples and the correspond-
Fig. 2. Illustrations of the true sample space (population) i.e. (a) and the results of two sa

mean that both (b) and (c) contain only a part of the total samples that appear in (a). 
ng nearest neighbor classifier can usually obtain relatively satisfac-

ory result. However, it still has the following issue. As we know,

or a real-world application, a limited number of available samples

re observation results of a sampling procedure of the population

n which all samples appear. Fig. 2 can partially illustrate this idea.

n this figure, (a) is supposed to be the true sample space i.e. pop-

lation. (b) and (c) stand for the results of two sampling proce-

ures of the true sample space. Of course, both (b) and (c) con-

ain only a part of the total samples that appear in (a). We know

hat different sampling procedures obtain different available sam-

les, thereby they also generate different nearest distances for the

ame probe sample and same classes. Actually, since the nearest

istance varies with the sampling procedure, it seems to be par-

ially random from a probabilistic point of view. As a consequence,

xploiting only the nearest distance to perform classification is not

ompletely reliable. Thus, we propose to incorporate the global dis-

imilarity i.e. center distance with the nearest distance as well as

istance ratio for classification of images. 

The rationale of the second characteristic of the proposed

ethod is also partly supported by numerical computation.

ig. 3 shows the used three categories of dissimilarity measures

f samples from the Georgia Tech face database. In the case cor-

esponding to this figure, the first 10 images of each person are

sed as gallery samples and the remaining images are exploited

s probe samples. The figure depicts three categories of distance

easures of the last probe with respect to all classes. We see that

hey all vary with the No. of the class and the variation trends

re partially similar, but there still exist difference. Specifically, the

erson correlation between the normalized distance ratio and nor-

alized center distance is 0.74. The Person correlation between the

ormalized center distance and normalized block distance is 0.70.

he Person correlation between the normalized distance ratio and

ormalized block distance is 0.93. The analyses above of course in-

icate that the three categories of dissimilarity measures used in

ur method contain enough difference and useful information for

redicting label of the probe sample. As a result, combining them

o perform classification is reasonable. 

Furthermore, the simultaneous use of the three dissimilarities

s reasonable also owing to the fact that both the original distance

atio and center distance are obtained on the basis of the Euclidean

istance, whereas the nearest block distance is attained using a

nique metric. We compare the block distance and Euclidean dis-

ance as follows. As we know, the widely used Euclidean distance

alculates the nearest distance i.e. straight line distance between

wo points. However, the block distance between two points can

e viewed as the reachable distance between two points located in

 road network. In this sense, the block distance has clear physical

eaning for measuring real-world distances. Fig. 4 visually shows

ifference of the block distance and Euclidean distance between

wo points in a two-dimensional space. First of all, for two points
mpling processes of the true sample space, i.e. (b) and (c). The sampling processes 
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Fig. 3. Three categories of dissimilarity measures of samples on the GT face database. These three categories of dissimilarity measures are simultaneously used in our 

method. 

Fig. 4. Comparison of the block distance and Euclidean distance in a two- 

dimensional space. For points G and H , the block distance is | g 1 −h 1 | + | g 2 −h 2 | and 

the Euclidean distance is 
√ 

( g 1 − h 1 ) 
2 + ( g 2 − h 2 ) 

2 
. Moreover, | g 1 −h 1 | and | g 2 −h 2 | 

are the lengths of the two sides of a right-angled triangle. 
√ 

( g 1 − h 1 ) 
2 + ( g 2 − h 2 ) 

2 

is the length of the hypotenuse of the same right-angled triangle. Based on rules 

of the triangle, we know that | g 1 −h 1 | + | g 2 −h 2 | > 

√ 

( g 1 − h 1 ) 
2 + ( g 2 − h 2 ) 

2 
, so the 

block distance between two points must be not less than the Euclidean distance. 

Only under very special condition (i.e. either | g 1 −h 1 | = 0 or | g 2 −h 2 | = 0), they 

may be identical. 
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Fig. 5. Illustration of the block distance and Euclidean distance between two points 

in a two-dimensional space. It visually tells us that for real blocks and two points, 

maybe there are more than one reachable pathway from a point to another point. 

Specifically, the orange lines, green lines and dark blue lines depict three reachable 

pathways from point G to point H . However, the respective length sums of the three 

pathways are the same. The dotted line represents the Euclidean distance of the 

two points. In this case, though the Euclidean distance of the two points is the 

shortest distance, there is no corresponding real pathway. 
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n a two-dimensional space, the block distance is always equal to

he length sum of the two sides of a right-angled triangle, whereas

he Euclidean distance is identical to the length of the hypotenuse

f the same right-angled triangle. Moreover, because the length

um of two sides of a triangle must be greater than the length

f the third side, the block distance and Euclidean distance have

he theoretical property that in a two-dimensional space the block

istance between two points is almost always greater than the Eu-

lidean distance. 

Fig. 5 visually indicates that the block distance between two

oints is the reachable distance between two points located in

 road network. All lines in this figure denote available roads

hereas all other locations are not reachable. This figure visu-

lly tells us that for real blocks and two points, maybe there are

ore than one reachable pathway from a point to another point.

owever, the length sum of each reachable pathway is the same.

ig. 5 also shows that the Euclidean distance between two points

s indeed the shortest distance and there is only a sole “path-

ay” corresponding to this distance. However, for a road network,

his sole “pathway” is an imaginary road and is not real. In other

ords, it is unreachable. 

The fact that the block distance between two samples is usually

reater than the Euclidean distance also has the following indica-

ive meaning. When the distance between sample vectors s and t is

alculated, we call the s - t difference vector. It is known that main

ifference of conventional distance metrics is that they use various
ays to cope with the difference vector. Compared with the Eu-

lidean distance, the block distance allows all components of the

ifference vector to be equally dealt with. In other words, since

he absolute values of all components of the difference vector are

irectly summed, the obtained distance faithfully reflects the mag-

itudes of all components. However, the Euclidean distance is di-

ectly associated with the squares of all components of the differ-

nce vector, so it enhances the effect of the components with large

bsolute values and weakens the effect of the components with

mall absolute values. For example, if the first and second com-

onents of a two-dimensional difference vector is −0.1 and 0.85,

hen the block distance is 0.95. However, in calculation of the Eu-

lidean distance, the squares of −0.1 is just 0.01, much less than

he squares of 0.85, so the effect of the first component is almost

eglectable and the final Euclidean distance is 0.856, which is al-

ost completely dominated by the second component of the dif-

erence vector. In real-world applications, it is possible that the

omponents with large absolute values contain more noise. As a

onsequence, the Euclidean distance will cause much more noise

han the block distance. For example, for an occluded face image

nd a normal face image of the same person, the components of
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Table 1 

Rates of classification errors (%) of different methods on the GT face database. 

6 7 8 9 10 11 

Our method 30.2 27.5 24.6 21.3 20.0 19.0 

NNC in the original space 35.8 32.3 29.7 26.0 27.6 24.0 

NNC in the transform space 40.7 37.3 34.6 32.0 33.2 29.5 

NNCC in the transform space 41.8 38.3 37.1 36.0 32.4 30.5 

NNBC in the transform space 32.9 29.5 27.4 26.0 24.0 22.5 

Collaborative representation 44.4 41.5 40.6 39.0 36.0 32.5 

L1LS 50.4 49.5 47.4 49.7 48.4 48.0 

FISTA 43.8 45.0 44.9 46.7 43.2 46.5 
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the difference vector corresponding to the occluded facial region

must have large absolute values. As a consequence, the Euclidean

distance will enhance the noise caused by the occlusion but the

block distance will not. On the other hand, for the difference vec-

tor of two face images respectively from two persons, some com-

ponents of the difference vector have large absolute values and si-

multaneously might reflect essential differences of the two faces,

so the amplifying effect of the Euclidean distance is also useful for

distinguishing the faces. Therefore, integrating the block distance

and Euclidean distance is a proper way to measure the difference

of face images under various circumstances. 

The proposed method can be viewed as a fusion method. How-

ever, it differs from conventional fusion methods, which fuse infor-

mation at the feature level, score level or decision levels. In con-

ventional fusion methods, usually at least two categories of data

are available. For example, multi-biometrics exploits different bio-

metrics traits such as faces, palmprint and fingerprint at feature

level, score level or decision level to generate the final recognition

result. In our proposed method, only one category of data i.e. orig-

inal image data are available and fusion is carried out on the basis

of the three categories of dissimilarity metrics on the same data. 

As we know, for a multi-view problem with three views and a

single dissimilarity metric, a multi-view learning method also can

get three dissimilarity values to represent relationship of each pair

of samples. In this sense, our method is partially equivalent to a

multi-view learning method. In other words, we may say that the

three dissimilarity metrics in our method allows the single modal

data to be observed from three points of view. 

4. Experimental results and analyses 

We present experimental results and necessary analyses in this

section. We call the nearest neighbor classification NNC. The near-

est neighbor classification implemented in the original space and

transform space are called NNC in the original space and NNC

in the transform space, respectively. The nearest neighbor center-

distance based classification is referred to as NNCC. The near-
st neighbor block-distance based classification is referred to as

NBC. Besides experiments on the above methods, we also com-

are our method with the widely used collaborative represen-

ation method and two well-known sparse representation algo-

ithms, L1LS [11] and the fast iterative shrinkage thresholding al-

orithm (FISTA) [1] , as they are three classification methods on ba-

is of a same special dissimilarity measure and classification rule.

ll methods except for collaborative representation, L1LS and FISTA

xploit the nearest neighbor classification strategy, therefore the

xperimental comparison is fair. When testing our method, we

dopt the same parameter setting r 1 = 0.1, r 2 = 0.1 and r 3 = 0.8

or the original Georgia Tech and ORL face databases. In the exper-

ment on the AR database which contains occluded face images,

 1 = 0.45, r 2 = 0.1 and r 3 = 0.45. We choose the parameter val-

es based on our empirical experience. In real-world applications,

ne may select proper values for the parameters via a validation

ataset. In particular, if the parameters are set to different values,

he validation dataset will attain different accuracies. The param-

ter values corresponding to the highest accuracy can be selected

s the optimal values. For all experimental results shown in the

ollowing tables, smaller numbers means better performance, be-

ause what they mean are rates of classification errors rather than

ccuracies. For all tables, the first row shows how many facial im-

ges of a person are used as gallery samples. For example, number

 in the first row of a table means that the first six images of ev-

ry person are exploited as gallery samples and its other images

re used as probe samples. The code of the designed method will

e accessible at http://www.yongxu.org/lunwen.html . 

.1. On the Georgia Tech (GT) face database 

The GT face database includes 750 facial images captured from

fty persons. As previous studies usually did, we resize each facial

mage into a size of 40 by 30 grey pixels. Variations in poses, illu-

inations and facial expressions are reflected by different images

f the same person [8] . Table 1 provides rates of classification er-

ors of different methods on the GT face database. It indicates that

http://www.yongxu.org/lunwen.html
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Table 2 

Rates of classification errors (%) of different methods on the ORL face database. 

2 3 4 5 6 7 

Our method 15.0 12.5 10.0 7.0 3.1 4.2 

NNC in the original space 17.5 13.6 10.8 9.0 5.0 6.7 

NNC in the transform space 20.3 17.5 12.9 11.5 6.9 10.8 

NNCC in the transform space 21.9 21.1 20.0 17.0 15.6 4.2 

NNBC in the transform space 16.3 14.6 11.7 7.5 3.8 4.2 

Collaborative representation 16.6 13.9 10.8 11.5 8.1 8.3 

L1LS 20.0 18.9 14.6 13.5 11.9 6.7 

FISTA 18.4 16.8 12.1 13.5 14.4 10.8 
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Fig. 6. Six original face images (shown in the first row) of the same person from 

the GT face database and the corresponding corrupted face images (shown in the 

second row). 
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a  

a  

t  

t  
ur method not only is better that NNC in the original space, NNC

n the transform space, NNCC in the transform space and NNBC

n the transform space, but also obtains fewer errors than collabo-

ative representation, L1LS and FISTA. For instance, when the first

 images of each face are used as gallery samples and the others

re exploited as probe samples, the rate of classification errors of

ur method is only 30.2%, much smaller than those of NNC in the

riginal space and the other methods. 

.2. On the ORL face database 

The face images of the ORL face database are collected from

orty persons and 10 face images are available for each person [17] .

n this database, besides variations in poses, illuminations and fa-

ial expressions are conveyed, the images also have difference in

lasses. In other words, some faces are imaged with glasses but

he others are not. Table 2 shows that the rate of classification er-

ors of our method is lower than those of all other methods. 

.3. On the AR face database 

The used AR face database contains face images of 120 persons.

n this database, for every person, there are 26 available face im-

ges. A remarkable characteristic of this database is that a num-

er of face images convey illumination changes or severe occlusion
Table 3 

Rates of classification errors (%) of different methods on the AR face d

3 4 

Our method 23.0 22.0 

NNC in the original space 35.0 34.2 

NNC in the transform space 40.9 42.7 

NNCC in the transform space 41.4 42.7 

NNBC in the transform space 38.2 40.0 

Collaborative representation 31.4 32.5 

L1LS 34.1 35.8 

FISTA 38.7 41.3 
15] . Table 3 offers rates of classification errors of different meth-

ds on the AR face database. We also see that our method always

utperforms all other methods in terms of the rate of classifica-

ion errors. In some cases, the rate of classification errors of our

ethod is lower than one half of those of some other methods.

n this sense, our method is very effective for recognition of faces

nder the condition that some faces are partially occluded. 

.4. On the GT corrupted face database 

In order to see how different methods are sensitive to noise, we

onduct this experiment. We impose Gaussian noise to each orig-

nal face image in the GT database by using Matlab function “im-

oise” and set type of noise as “gaussian”. Moreover, when using

his function, we set the mean and variance to zero and 0.01 re-

pectively. Fig. 6 provides six original face images of the same per-

on and the corresponding corrupted face images. We present the

xperimental result in Table 4 . The parameters of our method are

et to r 1 = 0 . 6 , r 2 = 0 . 3 and r 3 = 0 . 1 . We see again that our method

ttains lower rate of classification errors than all other methods

nd our method achieves very satisfactory performance. In addi-

ion, we find that in the transform space in this experiment, both

he block distance and nearest distance perform worse than the
atabase. 

5 6 7 8 

17.7 15.0 13.3 12.1 

27.9 23.8 22.6 21.3 

40.3 38.9 40.2 41.8 

42.1 42.1 43.3 44.2 

37.3 35.2 35.3 36.8 

30.4 29.2 29.7 30.1 

35.2 34.8 38.3 38.2 

41.7 42.3 45.4 46.5 
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Table 4 

Rates of classification errors (%) of different methods on the GT corrupted face database. 

6 7 8 9 10 11 

Our method 32.7 29.5 26.9 25.7 24.4 21.0 

NNC in the original space 37.6 35.3 32.0 29.7 28.8 25.5 

NNC in the transform space 59.1 57.8 56.3 53.7 53.6 49.0 

NNCC in the transform space 45.3 40.3 39.4 39.3 36.8 33.5 

NNBC in the transform space 56.0 52.0 49.7 47.3 48.0 45.5 

Collaborative representation 58.0 55.0 52.3 52.7 58.4 52.0 

L1LS 60.4 59.5 54.6 56.0 61.6 57.5 

FISTA 53.6 51.0 56.0 57.3 52.0 56.0 
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center distance when they are exploited to classify probe face im-

ages. This partially means that under a severe noisy circumstance

the local dissimilarity measure is not so reliable in representing

the class relationship of images as the global dissimilarity measure,

which is consistent with the analysis offered in Section 3 . 

5. Conclusion 

In this paper, we provide a simple method to combine global

and local dissimilarity measures from two sample spaces to per-

form image classification. This method not only is easy to imple-

ment but also has obvious rationale. Its good performance implies

that for classification of high-dimensional image samples, feature

extraction and classifier design may not be necessary. The pro-

posed simultaneous use of the original distance ratio from the

original sample space as well as the global class distance and near-

est block distance from the transform sample space, is very suit-

able for the classification problem of the high-dimensional image

samples. For a high-dimensional space, a limited number of avail-

able samples are indeed sampling results of the population. As a

consequence, the sole use of the nearest neighbor distance might

not well represent the dissimilarity relation of the probe sample

and each class and combining the global class distance and local

distances is a good way. A remarkable advantage of the nearest

block distance is that it properly and equally treats all components

of the difference vector. The proposed novel distance ratio is not

a conventional distance metric but has similar meaning. Moreover,

it provides complementary information for dissimilarity measures

of samples. The experimental results demonstrate that the pro-

posed method does achieve a very high accuracy in comparison

with the other methods. They also show that in conventional cases

the block distance can usually perform very well in identifying the

class relationship of probe images whereas under severe noisy cir-

cumstance the center distance can attain relatively low rate of clas-

sification errors in comparison with the block distance. In the fu-

ture, we will try to improve the proposed method. For example,

we will study whether the proposed dissimilarity may be replaced

by others such as the kernel distance. 
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