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ABSTRACT

The local dissimilarity has been verified as one of effective metrics for pattern classification. For high-
dimensional data, because of the property of high-dimension, even if there are a number of available
samples, they are still only resultant observations of a sampling process of the high-dimensional popula-
tion. As a consequence, available samples at least partially possess the property of randomness and are
not “accurate” representations of the true and total sample space. Besides the prevailing local dissimilarity
measure, global dissimilarity measures might also be exploited for improving the classification approach.
In this paper, we propose to directly exploit global and local dissimilarity measures to efficiently perform
image classification. The proposed method proposes to simultaneously use three dissimilarities derived
from the original and transform sample space. These dissimilarities including the elaborated distance ra-
tio enable space relations of the probe sample and gallery samples to be measured from three viewpoints,
so the combination of them provide us with more reliable measurements on spatial geometric relation-
ship of samples. An obvious advantage of this combination is that we can attain a very robust evaluation
on the space distance between samples and the consequent classification decision will be less affected
by the noise in data. The experiments prove that the proposed method does achieve the desired goal, i.e.,

very satisfactory accuracy improvement in comparison with the previous state-of-the art methods.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Classification of images is not only one of the most important
computer vision problems but also an important means to make
our society intelligent [2,5,16,20]. To implement classification of
images, dissimilarity measures must be used. A reasonable idea is
that a probe sample can be viewed as a member of the class of
the gallery with which the probe sample has the lowest dissimi-
larity [4,9]. Nearest neighbor classification (NNC) is a well-known
specific implementation of this idea [3,27].

Extensive applications of NNC are mainly attributed to not only
its simplicity but also its following theoretical property. Under the
condition that there are infinite gallery samples, the rate of clas-
sification errors of NNC must be lower than twice of that of the
minimume-error Bayesian classification method (MEBCM) [7]. Be-
cause MEBCM is the optimal classifier with the fewest errors, NNC
of course is a popular method owing to its good theoretical per-
formance. However, in most real-world applications infinite sam-
ples even a large number of samples are unavailable. Especially,
for applications on image classification, it seems that in most cases
the number of the gallery samples are less than the dimensionality
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[21]. In this sense, NNC usually cannot exert its ideal performance
owing to a limited number of gallery samples.

The center distance seems to be a feasible means to denote
global dissimilarity of a probe sample and a class. When the center
distance is used for classification, the computational cost is very
low. Moreover, it appears that the center distance based classifi-
cation method might be the fastest classification method, because
only calculation of C distance values is needed for classifying a
probe sample (C is the number of classes). If all classes are sep-
arated from each other, then it is undoubted that the centers of
different classes are far from each other. As a result, the center
distance based classification method can produce a high accuracy.
However, we must point out that in real world applications differ-
ent classes may have complex distributions. For example, distribu-
tions of some classes may not be subject to the normal distribu-
tion and even are multimodal [19]. Under these circumstances, the
center distance based classification method usually cannot obtain
a satisfactory accuracy.

In past studies, people pay a lot of attentions on choosing or
designing suitable dissimilarity metrics to represent the distance.
For example, we see that metric learning is a popular topic [31,33].
In recent years algorithm based dissimilarity metrics also receive
many concerns. The sparse representation based dissimilarity met-
ric is a typical example of algorithm based dissimilarity metrics
[25,29]. In the corresponding method, sparse representation is first
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implemented, then the solution of the sparse representation is ex-
ploited to calculate dissimilarities of the probe sample with ev-
ery class. Besides the original sparse representation method, the I,
norm regularization based sparse representation methods includ-
ing collaborative representation also use the same or similar dis-
similarity metric [6,14,26,28,30]. However, people almost ignore a
fact that different dissimilarity metrics all contain useful informa-
tion on representations of space relations of samples. As a result,
in this paper, we propose to simply combine three different dis-
similarity metrics for efficient image classification.

As we know, most of methods extract features from original
samples before pattern classification [32]. The main goal of fea-
ture extraction is to attain features beneficial to classification. For
example, subspace learning methods including linear discriminant
analysis and principal component analysis are widely used feature
extraction methods [10,12,18,24]. Subspace learning also has the
goal to reduce the dimension of the raw data. As a kind of typi-
cal feature transform method, subspace learning converts raw data
into a new space [13]. Besides feature transform, feature selection
is also widely used [22]. Feature selection can perform well un-
der the condition that some components of the original features
are better in representing discriminative information of patterns
than the other components [23]. However, with this paper, we find
that in the original sample space, if we choose proper dissimilarity
metrics, we can still attain very good classification result. There-
fore, we propose an image classification method without feature
extraction. In particular, though our proposed method copes with
the classification problem of images by virtue of only the raw data,
it can attain very high classification accuracies. In this sense, for
image classification, conventional feature extraction may be not a
necessary procedure. This can be partially attributed to the fact
that all information obtained using feature extraction methods in-
deed exists in the raw data.

Our method also has the following implications. Different dis-
similarity metrics have different physical meaning. Moreover, their
performance vary with the applications. Differing from metric
learning methods, our method demonstrates that combination of
multiple dissimilarity metrics is very useful for classification of im-
ages. Additionally, our findings also show that if the combined dis-
similarity metrics have enough difference, the result will be good.

2. The proposed method

The basic idea of the proposed method is that both global and
local dissimilarity measures of data are useful for representations
of space relations of samples so combination of them can improve
the classification performance.

Suppose that all images are gray images. The proposed method
has the following main calculations. First, all gallery samples and
probe samples are transformed into column vectors. So we also call
each of them a sample vector. In particular, as each naive sample is
an image, we first concatenate all columns of an image to generate
a column vector. Then the Euclidean distance between each origi-
nal probe sample and original gallery sample is calculated. The Eu-
clidean distance between probe sample ¢ and the jth gallery sam-
ple of the ith class is denoted by e{. Then all gallery samples and
probe samples are normalized as unit vectors of length 1. In other
words, sample vector g is normalized by h = %. The resultant h
is called transform sample. Hereafter we call the sample before the
normalization procedure original sample. The space corresponding
to the original samples and transform samples are referred to as
original sample space and transform sample space respectively. The
center of all transform samples of a class is obtained using

1
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p; denotes the center of the ith class. sf stands for the jth
gallery sample of the ith class. n is the number of the gallery sam-
ples of the ith class. The center distance between probe sample ¢t
and the ith class is defined as

M
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Dir is the kth entry of p;. t is the kth entry of t. M is the di-
mension of the sample. The block distance between probe sample
t and the jth gallery sample of the ith class is denoted by f { and
defined as

(2)
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sJ is the kth entry of s,’ Based on the basic calculations pre-

k
sentéd above, we offer all steps on probe sample t of the proposed

method as follows.
Step 1. The Euclidean distance between original probe sample ¢t
and the original jth gallery sample of the ith class is obtained and

denoted by e]. We define e[""= min e/ as Euclidean distance be-
j=1-n

tween original probe sample t and the ith class. elf""” is also called
the nearest distance of the probe sample to the ith class in the
original sample space. For original probe sample t, the ratio of the
Euclidean distance of the ith class to the sum of the Euclgn(ljnean dis-
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tances of all other classes is attained using emﬁo_m.
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is still the number of the classes. eimn.0 is called original distance
ratio of the probe sample with respect to the ith class.

Step 2. In the transform sample space, the center distance be-
tween probe sample t and the ith class is attained using Eq. (2) and
denoted by c;.

Step 3. In the transform sample space, the block distance be-
tween probe sample tand the j-th gallery sample of the ith class
is obtained using Eq. (3) and denoted by f/. Let fi"" = jmlinnff

stand for the block distance between probe sample t and the ith
class. fI™ is also called the nearest block distance of the probe
sample to the ith class in the transform sample space.

Step 4. The obtained dissimilarity values are normalized by

i [ ¢ min fpin ;
el =t e _apnd fi =—2__ respectively. The re-
ratio max(elmrio) ! max(c’) ! maX(f,mm)
sultant el . . ¢; and f{™" are called normalized distance ratio, nor-

malized center distance and normalized block distance, respec-
tively. The ultimate dissimilarity between probe sample ¢ and the
ith class is attained using u; =1y x el . +15 x ¢;+r3 x f{"" u; is
called fusion distance. rq, r, and r3 are the weight coefficients to
combine three distances el ., ¢; and f"".

Step 5. Let g =argmin u;. Then we think that probe sample ¢t

1

belongs to the g-th class and denote the classification decision by
label(t) = g.

Fig. 1 summarizes the pipeline of the proposed method. It
clearly presents that one dissimilarity metric is derived from the
original sample space and two dissimilarity metrics are generated
from the transform sample space.

3. Analysis of our proposed method

With this section, we present the characteristics and rationale
of the proposed method. The first characteristic of the proposed
method is that it evaluates dissimilarities between probe samples
and gallery samples in both the original sample space and trans-
form sample space. The transform sample space is very easy to
obtain from the original sample space, and it converts the compo-
nents of the original sample vector into a fixed range by the nor-
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Fig. 1. The pipeline of the proposed method.

malization. Moreover, the transform sample derived from the orig-
inal sample can weaken the effect, on the image, of illuminations.
As we know, for visible light images, strong illuminations usually
produce images with high gray values but weak illuminations will
generate low gray values. As a result, for the same object, the ap-
pearance will vary with illuminations. The normalization process
to produce the transform sample can effectively resist this influ-
ence and can partially weaken the original sample difference of
the same object caused by various illuminations, which is benefi-
cial to correct classification of images. On the other hand, because
the original sample and transform sample are both reasonable rep-
resentations of the image, to simultaneously exploit them for pat-
tern classification is a feasible and proper way.

The second characteristic of the proposed method is that it si-
multaneously uses global and local dissimilarity measures of sam-
ples for classification. Moreover, the exploited three dissimilarity
measures have enough difference. In particular, the center distance
aims to evaluate global dissimilarity. It can be viewed as an aver-
age distance of the probe sample to a class. On contrary, the block
distance and distance ratio are evaluations of local dissimilarity.
The distance ratio is a special dissimilarity designed by us. It is
calculated in the original sample space. It is not a conventional dis-
tance but a ratio, of the nearest distance of the probe sample to a
class, to the sum of the nearest distances of the same probe sample
to all other classes. The smaller this ratio is, the larger the proba-
bility of the probe sample being from the corresponding class is. In
this sense, the distance ratio has the same meaning as a conven-
tional distance. Thus, in our method it is reasonable to integrate
the distance ratio with the other two distances for classification.

As a widely used local dissimilarity, the nearest distance pro-
vides an effective means to represent local space relationship be-
tween the probe sample and training samples and the correspond-

C. Liu, . Wang and S. Duan et al./Pattern Recognition Letters 128 (2019) 536-543

ing nearest neighbor classifier can usually obtain relatively satisfac-
tory result. However, it still has the following issue. As we know,
for a real-world application, a limited number of available samples
are observation results of a sampling procedure of the population
in which all samples appear. Fig. 2 can partially illustrate this idea.
In this figure, (a) is supposed to be the true sample space i.e. pop-
ulation. (b) and (c) stand for the results of two sampling proce-
dures of the true sample space. Of course, both (b) and (c) con-
tain only a part of the total samples that appear in (a). We know
that different sampling procedures obtain different available sam-
ples, thereby they also generate different nearest distances for the
same probe sample and same classes. Actually, since the nearest
distance varies with the sampling procedure, it seems to be par-
tially random from a probabilistic point of view. As a consequence,
exploiting only the nearest distance to perform classification is not
completely reliable. Thus, we propose to incorporate the global dis-
similarity i.e. center distance with the nearest distance as well as
distance ratio for classification of images.

The rationale of the second characteristic of the proposed
method is also partly supported by numerical computation.
Fig. 3 shows the used three categories of dissimilarity measures
of samples from the Georgia Tech face database. In the case cor-
responding to this figure, the first 10 images of each person are
used as gallery samples and the remaining images are exploited
as probe samples. The figure depicts three categories of distance
measures of the last probe with respect to all classes. We see that
they all vary with the No. of the class and the variation trends
are partially similar, but there still exist difference. Specifically, the
Person correlation between the normalized distance ratio and nor-
malized center distance is 0.74. The Person correlation between the
normalized center distance and normalized block distance is 0.70.
The Person correlation between the normalized distance ratio and
normalized block distance is 0.93. The analyses above of course in-
dicate that the three categories of dissimilarity measures used in
our method contain enough difference and useful information for
predicting label of the probe sample. As a result, combining them
to perform classification is reasonable.

Furthermore, the simultaneous use of the three dissimilarities
is reasonable also owing to the fact that both the original distance
ratio and center distance are obtained on the basis of the Euclidean
distance, whereas the nearest block distance is attained using a
unique metric. We compare the block distance and Euclidean dis-
tance as follows. As we know, the widely used Euclidean distance
calculates the nearest distance i.e. straight line distance between
two points. However, the block distance between two points can
be viewed as the reachable distance between two points located in
a road network. In this sense, the block distance has clear physical
meaning for measuring real-world distances. Fig. 4 visually shows
difference of the block distance and Euclidean distance between
two points in a two-dimensional space. First of all, for two points
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Fig. 2. Illustrations of the true sample space (population) i.e. (a) and the results of two sampling processes of the true sample space, i.e. (b) and (c). The sampling processes

mean that both (b) and (c) contain only a part of the total samples that appear in (a).
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Fig. 3. Three categories of dissimilarity measures of samples on the GT face database. These three categories of dissimilarity measures are simultaneously used in our

method.
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Fig. 4. Comparison of the block distance and Euclidean distance in a two-
dimensional space. For points G and H, the block distance is |g;—h| + |g2—h3| and
(g1 = h1)? + (g2 — h2)°. Moreover, |gi1—hi|and |g,—h,|
are the lengths of the two sides of a right-angled triangle.\/ (g1 — h; )2 + (g2 — )’12)2
is the length of the hypotenuse of the same right-angled triangle. Based on rules
of the triangle, we know that |g;—hy| + |g2—h2| > v/ (g1 — 4 )2 + (g — hz)z, so the
block distance between two points must be not less than the Euclidean distance.
Only under very special condition (i.e. either |g;—h;| = 0 or |g;—hy| = 0), they
may be identical.

the Euclidean distance is

in a two-dimensional space, the block distance is always equal to
the length sum of the two sides of a right-angled triangle, whereas
the Euclidean distance is identical to the length of the hypotenuse
of the same right-angled triangle. Moreover, because the length
sum of two sides of a triangle must be greater than the length
of the third side, the block distance and Euclidean distance have
the theoretical property that in a two-dimensional space the block
distance between two points is almost always greater than the Eu-
clidean distance.

Fig. 5 visually indicates that the block distance between two
points is the reachable distance between two points located in
a road network. All lines in this figure denote available roads
whereas all other locations are not reachable. This figure visu-
ally tells us that for real blocks and two points, maybe there are
more than one reachable pathway from a point to another point.
However, the length sum of each reachable pathway is the same.
Fig. 5 also shows that the Euclidean distance between two points
is indeed the shortest distance and there is only a sole “path-
way” corresponding to this distance. However, for a road network,
this sole “pathway” is an imaginary road and is not real. In other
words, it is unreachable.

The fact that the block distance between two samples is usually
greater than the Euclidean distance also has the following indica-
tive meaning. When the distance between sample vectors s and t is
calculated, we call the s-t difference vector. It is known that main
difference of conventional distance metrics is that they use various

Fig. 5. Illustration of the block distance and Euclidean distance between two points
in a two-dimensional space. It visually tells us that for real blocks and two points,
maybe there are more than one reachable pathway from a point to another point.
Specifically, the orange lines, green lines and dark blue lines depict three reachable
pathways from point G to point H. However, the respective length sums of the three
pathways are the same. The dotted line represents the Euclidean distance of the
two points. In this case, though the Euclidean distance of the two points is the
shortest distance, there is no corresponding real pathway.

ways to cope with the difference vector. Compared with the Eu-
clidean distance, the block distance allows all components of the
difference vector to be equally dealt with. In other words, since
the absolute values of all components of the difference vector are
directly summed, the obtained distance faithfully reflects the mag-
nitudes of all components. However, the Euclidean distance is di-
rectly associated with the squares of all components of the differ-
ence vector, so it enhances the effect of the components with large
absolute values and weakens the effect of the components with
small absolute values. For example, if the first and second com-
ponents of a two-dimensional difference vector is —0.1 and 0.85,
then the block distance is 0.95. However, in calculation of the Eu-
clidean distance, the squares of —0.1 is just 0.01, much less than
the squares of 0.85, so the effect of the first component is almost
neglectable and the final Euclidean distance is 0.856, which is al-
most completely dominated by the second component of the dif-
ference vector. In real-world applications, it is possible that the
components with large absolute values contain more noise. As a
consequence, the Euclidean distance will cause much more noise
than the block distance. For example, for an occluded face image
and a normal face image of the same person, the components of
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-Ili.:':v:z cl)f classification errors (%) of different methods on the GT face database.
6 7 8 9 10 1
Our method 30.2 27.5 24.6 21.3 20.0 19.0
NNC in the original space 35.8 323 29.7 26.0 27.6 24.0
NNC in the transform space 40.7 37.3 34.6 32.0 33.2 29.5
NNCC in the transform space 41.8 383 37.1 36.0 324 30.5
NNBC in the transform space 329 29.5 27.4 26.0 24.0 22,5
Collaborative representation 444 41.5 40.6 39.0 36.0 325
L1LS 50.4 49.5 474 49.7 48.4 48.0
FISTA 43.8 45.0 44.9 46.7 43.2 46.5

the difference vector corresponding to the occluded facial region
must have large absolute values. As a consequence, the Euclidean
distance will enhance the noise caused by the occlusion but the
block distance will not. On the other hand, for the difference vec-
tor of two face images respectively from two persons, some com-
ponents of the difference vector have large absolute values and si-
multaneously might reflect essential differences of the two faces,
so the amplifying effect of the Euclidean distance is also useful for
distinguishing the faces. Therefore, integrating the block distance
and Euclidean distance is a proper way to measure the difference
of face images under various circumstances.

The proposed method can be viewed as a fusion method. How-
ever, it differs from conventional fusion methods, which fuse infor-
mation at the feature level, score level or decision levels. In con-
ventional fusion methods, usually at least two categories of data
are available. For example, multi-biometrics exploits different bio-
metrics traits such as faces, palmprint and fingerprint at feature
level, score level or decision level to generate the final recognition
result. In our proposed method, only one category of data i.e. orig-
inal image data are available and fusion is carried out on the basis
of the three categories of dissimilarity metrics on the same data.

As we know, for a multi-view problem with three views and a
single dissimilarity metric, a multi-view learning method also can
get three dissimilarity values to represent relationship of each pair
of samples. In this sense, our method is partially equivalent to a
multi-view learning method. In other words, we may say that the
three dissimilarity metrics in our method allows the single modal
data to be observed from three points of view.

4. Experimental results and analyses

We present experimental results and necessary analyses in this
section. We call the nearest neighbor classification NNC. The near-
est neighbor classification implemented in the original space and
transform space are called NNC in the original space and NNC
in the transform space, respectively. The nearest neighbor center-
distance based classification is referred to as NNCC. The near-

est neighbor block-distance based classification is referred to as
NNBC. Besides experiments on the above methods, we also com-
pare our method with the widely used collaborative represen-
tation method and two well-known sparse representation algo-
rithms, L1LS [11] and the fast iterative shrinkage thresholding al-
gorithm (FISTA) [1], as they are three classification methods on ba-
sis of a same special dissimilarity measure and classification rule.
All methods except for collaborative representation, L1LS and FISTA
exploit the nearest neighbor classification strategy, therefore the
experimental comparison is fair. When testing our method, we
adopt the same parameter setting r; = 0.1, , = 0.1 and r3 = 0.8
for the original Georgia Tech and ORL face databases. In the exper-
iment on the AR database which contains occluded face images,
ry = 045, r, = 0.1 and r3 = 0.45. We choose the parameter val-
ues based on our empirical experience. In real-world applications,
one may select proper values for the parameters via a validation
dataset. In particular, if the parameters are set to different values,
the validation dataset will attain different accuracies. The param-
eter values corresponding to the highest accuracy can be selected
as the optimal values. For all experimental results shown in the
following tables, smaller numbers means better performance, be-
cause what they mean are rates of classification errors rather than
accuracies. For all tables, the first row shows how many facial im-
ages of a person are used as gallery samples. For example, number
6 in the first row of a table means that the first six images of ev-
ery person are exploited as gallery samples and its other images
are used as probe samples. The code of the designed method will
be accessible at http://www.yongxu.org/lunwen.html.

4.1. On the Georgia Tech (GT) face database

The GT face database includes 750 facial images captured from
fifty persons. As previous studies usually did, we resize each facial
image into a size of 40 by 30 grey pixels. Variations in poses, illu-
minations and facial expressions are reflected by different images
of the same person [8]. Table 1 provides rates of classification er-
rors of different methods on the GT face database. It indicates that
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Table 2
Rates of classification errors (%) of different methods on the ORL face database.
2 3 4 5 6 7
Our method 150 125 100 7.0 3.1 4.2
NNC in the original space 17.5 13.6 10.8 9.0 5.0 6.7

NNC in the transform space 20.3 17.5 12.9 115 69 10.8
NNCC in the transform space 219  21.1 20.0 170 156 4.2
NNBC in the transform space 16.3 14.6 11.7 7.5 3.8 42
Collaborative representation 16.6 139 10.8 115 8.1 8.3
L1LS 200 189 146 135 119 6.7
FISTA 184 168 121 135 144 108

our method not only is better that NNC in the original space, NNC
in the transform space, NNCC in the transform space and NNBC
in the transform space, but also obtains fewer errors than collabo-
rative representation, L1LS and FISTA. For instance, when the first
6 images of each face are used as gallery samples and the others
are exploited as probe samples, the rate of classification errors of
our method is only 30.2%, much smaller than those of NNC in the
original space and the other methods.

4.2. On the ORL face database

The face images of the ORL face database are collected from
forty persons and 10 face images are available for each person [17].
In this database, besides variations in poses, illuminations and fa-
cial expressions are conveyed, the images also have difference in
glasses. In other words, some faces are imaged with glasses but
the others are not. Table 2 shows that the rate of classification er-
rors of our method is lower than those of all other methods.

4.3. On the AR face database

The used AR face database contains face images of 120 persons.
In this database, for every person, there are 26 available face im-
ages. A remarkable characteristic of this database is that a num-
ber of face images convey illumination changes or severe occlusion

Fig. 6. Six original face images (shown in the first row) of the same person from
the GT face database and the corresponding corrupted face images (shown in the
second row).

[15]. Table 3 offers rates of classification errors of different meth-
ods on the AR face database. We also see that our method always
outperforms all other methods in terms of the rate of classifica-
tion errors. In some cases, the rate of classification errors of our
method is lower than one half of those of some other methods.
In this sense, our method is very effective for recognition of faces
under the condition that some faces are partially occluded.

4.4. On the GT corrupted face database

In order to see how different methods are sensitive to noise, we
conduct this experiment. We impose Gaussian noise to each orig-
inal face image in the GT database by using Matlab function “im-
noise” and set type of noise as “gaussian”. Moreover, when using
this function, we set the mean and variance to zero and 0.01 re-
spectively. Fig. 6 provides six original face images of the same per-
son and the corresponding corrupted face images. We present the
experimental result in Table 4. The parameters of our method are
set to r; = 0.6, r, = 0.3 and r3 = 0.1. We see again that our method
attains lower rate of classification errors than all other methods
and our method achieves very satisfactory performance. In addi-
tion, we find that in the transform space in this experiment, both
the block distance and nearest distance perform worse than the

Elt);: 3f classification errors (%) of different methods on the AR face database.
3 4 5 6 7 8
Our method 23.0 22.0 17.7 15.0 13.3 12.1
NNC in the original space 35.0 34.2 27.9 23.8 22.6 213
NNC in the transform space 40.9 42.7 40.3 38.9 40.2 41.8
NNCC in the transform space 414 42.7 421 421 433 44.2
NNBC in the transform space 38.2 40.0 373 35.2 353 36.8
Collaborative representation 314 325 304 29.2 29.7 30.1
L1LS 341 35.8 35.2 348 383 38.2
FISTA 38.7 41.3 41.7 42.3 45.4 46.5
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Ezlt)el: :f classification errors (%) of different methods on the GT corrupted face database.
6 7 8 9 10 1
Our method 32.7 29.5 26.9 25.7 244 21.0
NNC in the original space 37.6 353 32.0 29.7 28.8 25.5
NNC in the transform space 59.1 57.8 56.3 53.7 53.6 49.0
NNCC in the transform space 453 40.3 394 393 36.8 335
NNBC in the transform space 56.0 52.0 49.7 47.3 48.0 45.5
Collaborative representation 58.0 55.0 52.3 52.7 58.4 52.0
L1LS 60.4 59.5 54.6 56.0 61.6 57.5
FISTA 53.6 51.0 56.0 57.3 52.0 56.0

center distance when they are exploited to classify probe face im-
ages. This partially means that under a severe noisy circumstance
the local dissimilarity measure is not so reliable in representing
the class relationship of images as the global dissimilarity measure,
which is consistent with the analysis offered in Section 3.

5. Conclusion

In this paper, we provide a simple method to combine global
and local dissimilarity measures from two sample spaces to per-
form image classification. This method not only is easy to imple-
ment but also has obvious rationale. Its good performance implies
that for classification of high-dimensional image samples, feature
extraction and classifier design may not be necessary. The pro-
posed simultaneous use of the original distance ratio from the
original sample space as well as the global class distance and near-
est block distance from the transform sample space, is very suit-
able for the classification problem of the high-dimensional image
samples. For a high-dimensional space, a limited number of avail-
able samples are indeed sampling results of the population. As a
consequence, the sole use of the nearest neighbor distance might
not well represent the dissimilarity relation of the probe sample
and each class and combining the global class distance and local
distances is a good way. A remarkable advantage of the nearest
block distance is that it properly and equally treats all components
of the difference vector. The proposed novel distance ratio is not
a conventional distance metric but has similar meaning. Moreover,
it provides complementary information for dissimilarity measures
of samples. The experimental results demonstrate that the pro-
posed method does achieve a very high accuracy in comparison
with the other methods. They also show that in conventional cases
the block distance can usually perform very well in identifying the
class relationship of probe images whereas under severe noisy cir-
cumstance the center distance can attain relatively low rate of clas-
sification errors in comparison with the block distance. In the fu-
ture, we will try to improve the proposed method. For example,
we will study whether the proposed dissimilarity may be replaced
by others such as the kernel distance.
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